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Abstract. The propagation of an optical pulse in a two-photon absorber is studied under the
conditions that the initial pulse is detuned from exact resonance, and the population of the upper
level remains small. The problem is solved by use of a recently developed variant of the inverse
scattering technique on a finite interval.

1. Introduction

Degenerate two-photon propagation(DTPP) means the coherent propagation of an optical
wave through a system of two-level atoms under the condition that two-photon absorption and
emission processes occur. The atomic energy difference,1E, and the photon frequency,ω0,
then fulfil 1E = 2h̄ω0. This system is the limit of (nondegenerate) TPP where there are
photons of two different frequencies (ω1 andω2), propagating in a two-level atomic system
fulfilling 1E = h̄(ω1 + ω2). The latter is closely related tostimulated Raman scattering,
both physically and mathematically, which is characterized by1E = h̄(ω1 − ω2). All three
systems are IST integrable in principle; cf [1,2]. The DTPP system, however, is unique among
integrable systems, in that standard methods have not yielded a solution for this system. Thus
instead of attempting to solve the full complex problem, we shall now take the approach of
looking at various limits of these equations, in order to better understand, and gain insight
into, the more general system. In the process, we have found that various limits are related
to other important systems. Here, by treating the low-excitation limit of the DTPP equations,
we find that these equations become the same as the equations of second harmonic generation
(SHG) with walk-off (v1 6= v2) and with phase modulations (chirps) of the pulse envelope.
Interestingly enough, both of these systems are of current nonlinear optical interest. SHG
provides a very simple means for generating pulses at frequencies either twice, or half that of
the pump. Thus solutions of one would also apply to the other. Here, we will study a simple
model initial-boundary-value problem from DTPP by use of the SHG equations, and also
present a new method for constructing solutions of these nonsoliton, finite-interval problems.

Earlier work on DTPP with amplitude-modulated pulses include the analytical solutions
given by Poluektovet al [3], which have been generalized recently [4]. In another paper [5],
additional analytical solutions have been constructed by means of Bäcklund transformations.
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Furthermore, for the same system, the one-phase periodic solution has been constructed, and
its modulation has been investigated by the Whitham method [6].

Here we look at DTPP in the SHG limit when one is off-resonance, and when the system
is on a finite or semi-infinite interval. We study the low-excitation limit of this system for two
reasons. First, the physically interesting regime certainly includes the low-excitation limit,
since one seldom has enough photon flux to cause the full excitation of all atoms or molecules
in a medium. Second, this limit avoids many of the complications of the full problem, which is
still unsolved. As one example, in the low-excitation limit, as we shall see below, although the
Lax evolution operator is singular for all values of the eigenvalue, it is still in a form where the
evolution of the scattering data can be readily determined. However, for the general problem,
this evolution operator has a different singular structure, one which has a much more complex
(and rich) evolution of the scattering data, the evolution of which has yet to be detailed.

In solving this SHG limit of DTPP, we have found a new and uniquely different method of
solution for these nonsoliton, but integrable systems where, in the Ablowitz–Kaup–Newell–
Segur (AKNS) notation [11],r = +q∗. For theser = +q∗ AKNS systems, when the potentials
vanish at infinity, or are on compact support, no bounded soliton solutions exist. The only
nonsingular and regular solutions which exist are those nonlinear solutions called ‘radiation’,
which are essentially nonlinear plane waves, and are represented by the continuous spectra
of the scattering problem of the Lax pair. However, in the case of a semi-infinite or a finite
interval, one does not require the entire continuous spectra in order to determine the solution.
One can get by with only a countable amount of the scattering data. We demonstrate how, for
this and other similar hyperbolicr = +q∗ systems, one can represent the scattering data by an
infinity of poles in thelower half complex plane, and their residues. We will call these poles,
‘virtual solitons’. We then demonstrate that one can solve the Gelfand–Levitan–Marchenko
(GLM) integral equations in terms of these virtual solitons. Such a solution will be an infinite
sum. However, it can be obtained numerically, and we do verify that the sum over the virtual
solitons, in the lower half complex plane, do give the correct solution. Furthermore, in the
limit of vanishing detuning, we verify that we can reconstruct the known exact solution of this
C-integrable problem [10]. We also verify that, as the number of poles are increased, the pole
solution does approach the numerical solution of the partial differential equations (PDE), (11).
The limit on the number of poles used is simply limited by the power of the computer used,
and by the power of the symbolic and numerical software used.

In section 2, we show that the low-excitation limit of DTPP equations is the same as the
SHG equations, and we then give the Lax pair. In section 3, we discuss the initial-boundary-
value problem that we will solve, and then proceed to reduce it to a canonical form. In
section 4, we review the recent reformulation of the inverse scattering transform (IST) for a
finite or semi-infinite interval [10], emphasizing how, for these hyperbolic-type systems, one
can solve for the evolution of the scattering data by means of an ‘effective’ scattering matrix.
We then proceed to show how the integral over the scattering data, in the GLM equations, can
be reduced to an infinite sum over the residues of the poles in the lower half complex plane. We
emphasize here and later that this method will always be restricted to the finite or semi-infinite
interval, since for an infinite interval problem, certain integrals could not then exist.

In section 5, we discuss the simple one-pole potential for a single virtual soliton, and
discuss its possible forms, one of which is periodic and singular. However, for the problem
at hand, we find that this form never occurs, and that the solution is regular and nonsingular.
We also demonstrate that this solution is valid in the limit of small detuning, and that this limit
recovers theC-integrable real amplitude solution case. In section 6, we treat the generalN -pole
approximation. In section 7, we compare the solution found in the previous section, against
the numerical solution obtained by direct numerical integration of the PDEs, (11). We find
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excellent agreement, with theN -pole approximation converging well toward the numerical
solution. Summary and conclusions are given in section 8.

2. The low-excitation limit of DTPP is equivalent to SHG

Let us start with the DTPP equations in the form

∂τ r− = −2i(E2r3 + gEE∗r−) (1)

∂τ r3 = i(r+E2 − r−E∗2) (2)

∂χE = i

2
(r−E∗ − gr3E) (3)

where E is the slowly varying electric field amplitude. The Bloch vector(r1, r2, r3),
r± ≡ r1± ir2 fulfils

r2
1 + r2

2 + r2
3 = 1. (4)

Hereχ and τ are space and retarded time variables respectively. They are related to the
laboratory space and time coordinatesx, t by χ = x, τ = t − x/v, with v being the group
velocity, and the units are chosen to make the coupling coefficients unity.g is a constant that
has two different aspects [4]. In (1) it describes the dynamic Stark shift. In (3), it describes
a population dependent refractive index. Why these two different aspects have the same
coefficient, and the same numerical value, is not fully understood [4].

These equations only differ from what was presented in former papers [4,5] by the omission
of theS-vector notation. In this paper, we shall go directly to the low-excitation limit of these
equations, and treat that problem.

To obtain the low-excitation limit, all that we have to do, is to taker+r− � 1,
r3 ' −1 + r+r−/2, but in (1), we replacer3 by simply−1. Then the above system reduces to

∂τ r− = 2i(E2 + gEE∗r−) (5)(
∂χ − ig

2

)
E = i

2

(
r−E∗ − 1

2
gr+r−E

)
. (6)

To reduce this system to the SHG equations, we perform a rather simple phase transformation,
which will transformg to zero. From the conservation law

∂τ (r+r−) + 4∂χ(EE∗) = 0 (7)

it follows that there exists a functionδ(χ, τ ), such that

∂χδ = g

4
r+r− ∂τ δ = −gEE∗. (8)

The phase transformation is

Ẽ = Eei(δ−gχ/2) r̃− = r−ei(2δ−gχ) (9)

from which we see that̃E , r̃− satisfy exactly the same equations as (5), (6) but now,g = 0.
Next, define

q2 = −i r̃− q1 = Ẽ χ̃ = χ/2 (10)

and then, upon omitting the tilde on theχ , we arrive at the equations

∂χq1 = −2q2q
∗
1 ∂τ q2 = q2

1 (11)

which are the equations for SHG, see, e.g. [7–9]. The scaling of the variables have been
chosen such that the conservation law (7) becomes∂χ(q1q

∗
1) + 2∂τ (q2q

∗
2) = 0 whereinqkq∗k

can be interpreted as photon current densities, up to a common constant factor. In the DTPP
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problem, the characteristic coordinateχ coincides with the laboratory coordinatex. For the
SHG problem, when both fields are optical fields, the connection between the characteristic
coordinatesχ, τ and the laboratory coordinates,x, t is

x = χ + τ t = χ/v1 + τ/v2 (12)

so that the derivatives are transformed according to

∂χ = ∂x +
1

v1
∂t ∂τ = ∂x +

1

v2
∂t (13)

wherev1, v2 denote the group velocities of the optical fields.
Once we have the equations in the form of (11), they can be shown to be the integrability

conditions for the Lax pair [7]

∂χ

(
ψ1

ψ2

)
= U

(
ψ1

ψ2

)
≡
(−iζ 2q2

2q∗2 iζ

)(
ψ1

ψ2

)
(14)

∂τ

(
ψ1

ψ2

)
= V

(
ψ1

ψ2

)
≡ i

ζ

(−q∗1q1 −q2
1

q∗21 q∗1q1

)(
ψ1

ψ2

)
. (15)

These equations have been studied in [7]. There, the scattering data are defined, and it was
shown that the evolution of the scattering data would satisfy a second-order ordinary differential
equation (ODE). Here, we shall take a model initial-boundary-value problem, and demonstrate
the solution of it by a new technique, using ‘virtual solitons’.

3. Formulation of the problem

The typical physical problem to be solved for DTPP (here restricted to the low excitation limit)
is that of an optical pulseq1(0, τ ) incident on the medium atχ = 0. At τ = τ0, the medium is
prepared in a given atomic stateq2(χ, τ0), whereτ0 could be finite. In particular, it could be
prepared atτ = 0, or even atτ →−∞. With these conditions, this is aGoursat problem, i.e.,
where the initial values are prescribed along the characteristics. If the atoms were initially in
the ground state, thenq2(χ, 0) ≡ 0. This problem, we will call therestrictedGoursat problem.
The only real difference between these two problems is that for the nonrestricted problem, the
initial value of the effective scattering matrix would be some nontrivial unitary matrix, and not
the unit matrix.

Now, in the case of SHG, the typical physical problem to be solved is not a Goursat problem.
For a SHG initial-boundary-value problem, typically the fieldsq1, q2 both are given atx = 0,
which in this case, is not a characteristic, cf (12). Such a problem is called aCauchy problem
and is more complex than the restricted Goursat problem considered here. Nevertheless the
solution of this Goursat problem will give insight into understanding the Cauchy problem.
(For the solution of the Cauchy problem when restricted to purely amplitude-modulated pulses
see [9].)

Let us return and study the restricted Goursat problem for DTPP. The simplest such
problem would be one whereq1 has a constant amplitude and has a finite width. That case has
been treated in [9]. Here we will consider the case when a phase variation is present, which
cannot be solved by the techniques in [9]. The simplest phase variation is a nonzero linear
variation, which corresponds to an unchirped, but off-resonance pulse. Thus we shall take

q1(0, τ ) = q10e
i1τ q2(χ, 0) = 0 (16)

for 0 < τ < T0, and zero outside, and whereT0 is the width,q10 is a constant, and1 is
the nonzero frequency mismatch, which is constant and real. The physical interpretation of
this pulse is that the incident wave is a square pulse, with a constant frequency mismatch
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tuned away from the exact resonance. We will now show that, due to the symmetry of these
equations, we may set both parameters in (16) equal to unity.

Symmetry. Because there is an arbitrary constant phase, we may takeq10 as real and
positive. Since the SHG equations (11) have only real coefficients, they are invariant under the
transformation(q1, q2)→ (q∗1, q

∗
2). Therefore we may take1 > 0. Furthermore, it is easy to

see that these equations are invariant as well under the similarity transformation

χ̃ = q2
10

1
χ τ̃ = 1τ q̃1 = q1

q10
q̃2 = 1

q2
10

q2. (17)

As a result of these transformations, without loss of generality, we may therefore take

q10 = 1 = 1 (18)

for 0 < τ̃ < T01, and zero otherwise. This is the restricted Goursat problem (16) that we
shall solve. Now, let us consider how we may use the above Lax pair to solve this problem.

4. The inverse scattering scheme

We take (14) as thescattering problemwith q2(χ, τ ), with τ fixed, as thepotential. This
problem is the same as the Zakharov–Shabat (ZS) problem, withr = +q∗. This problem is the
self-adjoint form, and thus, on the infinite interval, for potentials vanishing as|χ | → ∞, there
are no bound state eigenvalues: namely, for bounded eigenfunctions,ζ can be real only. The
other half of the Lax pair, (15), will then be used to determine theτ -evolution of scattering
data.

4.1. The direct scattering problem

This, of course, is trivial. In the DTPP problem, the potential atτ = 0 corresponds to the
initial molecular excitation level, which we have taken to vanish. Thus the initialS-matrix is
the unit matrix for any finite interval, as well as for the full-line or for the half-line.

4.2. Theτ -evolution of the effective S-matrix

As we have indicated before, one may solve this problem by the use of an effectiveS-matrix.
How one may do this has been extensively treated in the foregoing paper [10]. What was shown
there was the following: principally, in order to obtain theτ -evolution of theS-matrix in a finite
interval, 0< χ < χf , one needs bothV (0, τ )—which is known from the initial data—and
alsoV (χf , τ )—which cannot be readily obtained until the solution is obtained, and therefore
is not readily known. However, as discussed in [10], and as is well known, to construct the
solution by the method of characteristics, one never needs to know the solution atχ = χf ,
which is into the ‘future’. Thus the kernels in the GLM equations must be independent of
V (χf , τ ), and only dependent onV (0, τ ). In [10], it was then shown that if one defined the
evolution of aneffectiveS-matrix by simply ignoringV (χf , τ ), then this effectiveS-matrix did
contain all the necessary information for determining the evolution of the scattering data. In
fact, it was proven there that for AKNS problems, and forV -matrices vanishing asymptotically
for |ζ | → ∞ (equivalent to being a hyperbolic-type equation), the effectiveS-matrix gives
correct physical resultsinside the considered interval. All these conditions are fulfilled for our
present problem.
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Once we have established this, then according to [10], theτ -evolution of theeffective
S-matrix is given by

∂τS
eff = −SeffV (0, τ ) Seff(0) = 1 (19)

with

V (0, τ ) = i

ζ

( −1 −e2iτ

e−2iτ 1

)
. (20)

The solution for the effectiveS-matrix is readily found to be

Seff(τ ) = (1cos(wτ) + iw−1M sin(wτ))T (τ) (21)

where

w = w(ζ ) =
√

2/ζ + 1 (22)

M = ζ−1(σ3 + iσ2) + σ3 (23)

T (τ) =
(

exp(iτ) 0
0 exp(−iτ)

)
(24)

with σk being the standard Pauli spin matrices. From the above effectiveS-matrix, one finds
the ‘reflection coefficient’ in the usual manner, and it is given by

c(ζ, τ ) ≡ −S
eff
12

Seff
11

= e2iτ

ζm[w(ζ ), τ ]
(25)

where

m(w, τ) ≡ [iw cot(wτ)− (w2 + 1)/2]

= 1
2(w + i tan(wτ/2))(−w + i cot(wτ/2))

= [(w + 1)eiwτ + (w − 1)][(w + 1)eiwτ − (w − 1)]

2(1− eiwτ )(1 + eiwτ )
. (26)

As pointed out in [10], although this reflection coefficient is not the full reflection coefficient,
nevertheless, in the integral below, (27), it will give the correct value, whenx is inside the
interval of interest.

4.3. Preparation for the inverse scattering problem: poles and residues

The solution requires that one evaluates the integral given below, in the complexζ -plane.
Since the integrand is an analytic function, this integral can be evaluated in terms of the poles
and residues. In this case, it turns out that all the poles are in the lower half complexζ -plane.
Furthermore, one can see that whenz > 0 and|ζ | → ∞ in the lower half complex plane,
the integrand vanishes exponentially. Similarly, whenz < 0 and|ζ | → ∞ in the upper half
complex plane, the integrand again vanishes exponentially. Thus this integral can be reduced
to only contributions from the poles.

The integral that we have to compute is

G(z, τ) = 1

2π

∫
C
c(ζ )e−iζz dζ = e2iτ

2π

∫
C

e−iζz

m[w(ζ ), τ ]

dζ

ζ
. (27)

The integration curveC goes from−∞ to +∞ in the complexζ -plane, and passes above all
poles of the integrand. The location of the poles ofc, according to (25), (26), will be determined
by

eiwτ = ±w − 1

w + 1
. (28)
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To solve for the roots of (28), we breakw into real and imaginary parts,w = wR + iwI , from
which we get

e−wI τ =
∣∣∣∣ (wR − 1) + iwI
(wR + 1) + iwI

∣∣∣∣ . (29)

For τ > 0 any solution necessarily fulfils

wRwI > 0 (30)

and then implies that the corresponding imageζ = 2/(w2 − 1) cannot be in the upper half
ζ -plane.

Becausem(w, τ) is an even function ofw we may considerwR > 0 only. The required
poles can be expressed by using the reverse functions with respect toy = −iz tanz and
y = iz cotz. The respective functions,z(y), are multivalued. Let us define single-valued
branches as follows:

z = Q2k−1(y) y > 0 : y = −iz tanz z→ (k − 1
2)π for y →∞

(31)

z = Q2k(y) y > 0 : y = iz cotz z→ kπ for y →∞
(32)

with k = 1, 2, 3, . . . . Then for 0< y <∞Qj (y), j = 1, 2, 3, . . .moves between(j −1)π/2
andjπ/2 with ImQj (y) > 0. Now

wj = (2/τ)Qj (τ/2) (33)

are the zeros ofm(w, τ) from which the poles forζ are

ζj = 2

w2
j − 1

j = 1, 2, 3, . . . . (34)

Summarizing, we state that there are no poles on the upper halfζ -plane while there is an
infinite number on the lower halfζ -plane, clustering forw → ∞, corresponding toζ = 0.
Remarkably, the movement of these poles as a function ofτ can be described by the rather
simple differential equation

dζj
dτ
= ζj (2 + ζj )

τ + iζj
. (35)

Now, let us consider the evaluation of the integral in (27). First, whenz < 0, we simply
close the contour from above, and we obtain zero for the integral since there are no poles inside
the contour. Forz > 0, the curve of integration may be closed in the lower half plane, such
that it goes around all polesζj (j = 1, 2, . . .). The corresponding residues are found to be

cj = ζ−1
j Res[m−1[(w(ζ ), τ )]|ζ=ζj =

ζ 2
j (ζj + 2)

ζj − iτ
= iζj

dζj
dτ
. (36)

The functionG can be expressed in terms of the residues, as a sum over the polesζj . Note
that there is no contribution from the essential singularity atζ = 0. To see this, consider the first
line of (26) and take a half-circle, going up into the upper halfw-plane, fromwn = (n+ 1

2)π/τ ,
n integer to,−wn. There, cot(wτ) is bounded with some bound, independent ofn. Therefore
for n → ∞, we have|m| → |wn|2/2 ∝ n2. The image of this half-circle in theζ -plane is
a closed curve—approximately a circle—around the origin. This curve crosses over a pass
between two singularities, and the corresponding contribution to the integral in (27) decays as
n−2. Thus we have

G(z, τ) = −iθ(z)
∞∑
j=1

cje
−iζj z (37)

whereθ(z) denotes the Heaviside step function.
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4.4. The GLM equations

The scattering problem defined by (14) fits into the AKNS scheme [11] with the specification
q = r∗ = 2q2. Equations (4.39a), (4.39b) from [11] give the GLM equations for inversion
aboutx = −∞, namely

L̄1(χ, y) +G(χ + y)−
∫ χ

−∞
L1(χ, s)G(s + y) ds = 0 (38)

L1(χ, y) +
∫ χ

−∞
L̄1(χ, s)Ḡ(s + y) ds = 0. (39)

In our case (r = +q∗) it holds that

Ḡ(z, τ ) = −G∗(z, τ ). (40)

Thepotentialq = 2q2 then is connected with the solution of the integral equations (38), (39)
by

q2(χ) = q(χ)/2= L̄1(χ, χ). (41)

It is easy to see that fromG(z) = 0 for z < 0 it follows q2(χ) = 0 forχ < 0. The substitution
of G from (27) into (38), (39) leads to

L̄1(χ, y) + i
∑
k

cke
−iζky

∫ χ

−y
L1(χ, s)e

−iζks ds = i
∑
k

cke
−iζk(χ+y)

L1(χ, y)− i
∑
k

c∗ke
iζ ∗k y

∫ χ

−y
L̄1(χ, s)e

iζ ∗k s ds = 0 χ + y > 0.
(42)

Obviously, these equations can be solved firstly for a truncated sum withk running from 1 to
N , and then taken in the limit ofN →∞. We will shortly illustrate this numerically.

But first, let us take the very simple case of a single pole and work out its solution. This
potential will be called a ‘virtual soliton’, to emphasize that it is not a real soliton, for which
the pole would have been in the upper halfζ -plane. We will then show that this potential, in
the limit of vanishing detuning, approaches the same as that given in [10].

5. The one-pole potential

Let us assumeτ ≡ 2y � 1. As per (17), this can be achieved either by the limit of a very
short pulse or a vanishing detuning. In either case, we are near the pure amplitude modulation
case, considered in [10], which is described by theC-integrable Liouville equation. Under
these conditions, we find

Q2
1 = y

(
i +

y

3

)
+ · · · ζ1 = −τ

(
i +

τ

3

)
+ · · ·

Qj+1 = jπ

2
+

2iy

jπ
+ · · · ζj+1 = 2τ 2

j2π2

(
1− 4iτ

j2π2

)
+ · · · j = 1, 2, 3, . . . .

(43)

Thus the first poleζ1 is well separated from the others, and its residue, according to (36) is

c1 = −τ(i + τ) + · · · (44)

with the higher-order residues vanishing at least likeτ 3. Thus a one-pole potential will
approximate the solution when the total phase change across the pulse amplitude is small.

Although the general solution is always a sum over the poles, these poles are in the lower
half complexζ -plane. Usually, and particularly when the interval is infinite, only poles in the
upper half complexζ -plane contribute to such integrals. This latter case is very well known,
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and the solutions forN -poles are calledN -soliton solutions. As we see here, when one uses a
finite or semi-infinite interval, one can have contributions from poles in the lower half complex
ζ -plane. Thus we should analyse the potentials that arise due to these poles, and see what
are some of their characteristics. We will call these potentials ‘virtual solitons’ to distinguish
them from usual solitons.

First, let us look at a one-virtual-soliton potential. We take a single pole in the lower half
complex plane, located atζ1 = ξ1 + iη1, η1 < 0 with some arbitrary residuec1. Now, let us
construct the corresponding potential

∂y

(
L̄1(χ, y)

L1(χ,−y)
)
= M

(
L̄1(χ, y)

L1(χ,−y)
)

(45)

with

M = −i

(
ζ1 c1

c∗1 ζ ∗1

)
. (46)

Equation (45) is solved by(
L̄1(χ, y)

L1(χ,−y)
)
= 8(χ + y)

(
L̄1(χ,−χ)
L1(χ, χ)

)
(47)

where

8(y) ≡ e−iξ1y

k

(
k cosh(ky) + η1 sinh(ky) ic1 sinh(ky)
−ic∗1 sinh(ky) k cosh(ky)− η1 sinh(ky)

)
(48)

with

k ≡
√
η2

1 − c1c
∗
1. (49)

From (
L̄1(χ, χ)

L1(χ,−χ)
)
= 8(2χ)

(
L̄1(χ,−χ)
L1(χ, χ)

)
(50)

and

L̄1(χ,−χ) = ic1 L1(χ,−χ) = 0 (51)

we find

L̄1(χ, χ) = ic1ke−2iξ1χ

k cosh(2kχ)− η1 sinh(2kχ)
(52)

L1(χ, χ) = − c1c
∗
1 sinh(2kχ)

k cosh(2kχ)− η1 sinh(2kχ)
. (53)

Thus the potentialq(χ) ≡ 2L̄1(χ, χ) is exponentially decaying ifη2
1 > c1c

∗
1 and periodic

(and also singular!) ifη2
1 < c1c

∗
1. This latter case points out that if one would indeed ever have

η2
1 < c1c

∗
1, then the virtual soliton could possibly propagate out to largeχ , and also become

essentially singular. However, as we shall see, for our example, this never occurs. For the case
whenη2

1 = c1c
∗
1, we simply take the limit ofk→ 0, obtaining

q2(χ) = L̄1(χ, χ) = ic1e−2iξ1χ

1− 2η1χ
. (54)

Note that in the above,η1 < 0. Thus the one-virtual-soliton potential given by (54), is
nonsingular forχ > 0.
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Now, let us return to ourτ -dependent problem. From (43) and (44), we obtain the limiting
form of ζ1 andc1. In this limit, we have thatk→ 0, and from (54), and to the lowest order in
τ , we find that

q
(1)
2 →

τ

1 + 2χτ
. (55)

Given (55), it then becomes a simple matter to solve (11) for an exact real solution forq1,
which is

q
(1)
1 →

1

1 + 2χτ
. (56)

This one-virtual-soliton potential, in the limit of smallτ , is exactly the real amplitude solution
considered in [10]. Thus we have that the solution generated by this summation over the poles
in the lower half plane, has the correct limit in the limit of vanishing detuning,1→ 0.

6. TheN -pole potentials

Now, we need the solution in the limit ofN → ∞. To this end, let us construct the general
N -pole potential, with the intention of eventually taking this limit. We define

hj (χ, y) ≡ e−iζj y

(∫ χ

−y
L1(χ, s)e

−iζj s ds − e−iζj χ

)
h̄j (χ, y) ≡ e−iζ ∗j y

∫ χ

y

L̄1(χ, s)e
iζ ∗j s ds

(57)

for j = 1, 2, . . . , N . Then we get

(∂y + iζj )hj (χ, y) = L1(χ,−y) (∂y + iζ ∗j )h̄j (χ, y) = −L̄1(χ, y) (58)

and this combination, with (42), leads to a system of 2N homogeneous linear ODEs with
constant coefficients (χ is a fixed parameter),

i∂yh(χ, y) = Mh(χ, y) h ≡ (h̄j , hj )T (59)

with the 2N × 2N matrix

M =
(
M11 M12

M21 M22

)
(60)

which is formed from theN ×N submatrices

(M11)∗ = M22 = diag[ζ1 . . . ζN ] (61)

M12 = (M21)∗ = −
(
c1 · · · cN
· · · · · · · · ·
c1 · · · cN

)
. (62)

The system (59) has to be solved with the boundary conditions

hj (χ,−χ) = −1 h̄j (χ, χ) = 0. (63)

Next, we diagonalizeM,

M = ADA−1 (64)

with D being diagonal and define the matrix

0(χ) ≡ Ae2iDχA−1 (65)

which has the property

h(χ,−χ) = 0(χ)h(χ, χ). (66)
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Figure 1. The first four out of an infinity of poles in
theζ -plane are depicted in steps of growingτ (retarded
time).

Figure 2. Forχ = 5 successiveN -pole approximations
with N = 6, 12, 18 and 24 are compared with the
numerical solution (dotted curve). (|q2|2 = |r+|2 means
the excitation of the medium, cf the transformation in
section 2.)

Then from the boundary conditions (63) we get, in particular,

h(χ,−χ) = 022h(χ, χ) h(χ, χ) = (022)−1h(χ,−χ) (67)

where022 is the lower rightN ×N submatrix of0 andh ≡ (h1, . . . hN)
T . Now thehj (χ, χ)

are known as per (67), (63), and when combining this with (41), (58), (59), (62) we arrive at
the formula

q2(χ) = L̄1(χ, χ) = −i
N∑
j=1

cjhj (χ, χ). (68)

Here theτ variable, which is fixed, has been omitted for simplicity. In the limit ofN →∞, we
may obtain the functionq2(χ, τ ) for the consideredχ–τ region. q1(χ, τ ) can then be found
by numerical differentiation, according to the second of equations (11).

7. Convergence of theN -pole potentials and their comparison with the numerical
solution

The crucial question now is whether the Goursat problem under consideration could be solved
approximately by such a prescribedN -pole potential, and whether—with increasingN—the
potential will eventually converge to the solution.

The polesζj , determined by (34) through the zeroswj of the functionm(w, τ), see (26), are
depicted in figure 1. For any fixedτ , there is an infinity of poles clustering at the origin. From
the figure, one may see how the first four poles move as functions ofτ . For the poles near to
the origin, the residues are small and∝ |ζj |2. However, at the same time, their decay constants
(see (58)) also become small as well. This means that for larger values ofχ , more and more
poles will be necessary for convergence. Therefore anN -pole potential can be expected to be
valid only in a restrictedχ–τ region. Figure 2 shows how the numerical solution forχ = 5
(dotted curve) is approximated by successiveN -pole potentials, withN = 6, 12, 18, 24. It is
clearly seen that the approximation becomes better and better with growingN . ForN = 24
the curves coincide forτ < 3.
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Figure 3. The excitation of the medium from the 24-
pole approximation is depicted in dependence onτ for
χ = 0–5.

Figure 4. The output|q1|2 = |E |2 of the optical pulse is
depicted for probe lengthsχ = 1–5 and compared with
the input atχ = 0. Here 24 poles are used just as in
figure 3.

In figures 3 and 4 respectively,|q2|2 = |r+|2 (the excitation of the medium) and|q1|2 = |E |2
(the intensity of the optical pulse) are depicted as functions of the retarded timeτ for χ = 0–5.
From the physical point of view we are mostly interested in figure 4 which directly illustrates
the propagation of an optical square pulse in a two-photon absorber with detuning. There
is some modulation of the pulse with the modulation time (=distance of maximum values)
growing withτ and decreasing withχ while the modulation depth is slightly decreasing with
both variables.

8. Summary and conclusion

In this paper, together with the preceding one [10], it is shown that the inverse scattering
method can be applied to a finite or semi-infinite interval by use of theeffectiveS-matrix. So
far, we have studied AKNS problems and found poles in the upper or lower halfζ−plane for
r = −q∗ or r = +q∗ respectively. Apart from trivial examples there is an infinity of poles.
For solutions in a restricted space–time region, it makes sense to construct solutions by using
a finite number of poles.

The numerical effort required for establishing anN -soliton potential is twofold: first one
has to solve a transcendental equation (28) to obtain theN leading polesζj , see (34). Then
one has to carry out the linear algebra as described in section 6.

At the moment, there is no indication that one can obtain the asymptotic form of the
solutions. However, with this formulation here, it can be anticipated that in the limit of
N →∞, such may possibly be gleaned.
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